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DNA the molecule of life . f
e i "*'itmﬂ \ ".-" -
Trillions of cells A J g |
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Each cell: W -
chromosomes

46 human
chromosomes

2 meters of |
DNA
' 47

3 billion DNA \
subunits (the DNA
bases: A, T, C, G)

Approximately
30,000 genes
code for proteins

that perform most :
NER A protein

DOE Genome to Life




GEHES, PROTEINS, AND MOLECULAR MACHINES

PROTEIN
ACHINE

A

i
| Profeins act alone

or in complexes
to all
cellular functions

= http://www.ornl.gov/hgmis



Protein Complex

LIFE

MOLECULAR MACHINES OF LIFE

PROTEASOMES

DYNEIN COMPLEX

RIBOSOME

DOE Genome to




DOE Genome to Life .

ldentify and characterize protein complexes
ldentify gene regulatory networks

Microbial genome

Systems level modeling
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Protein — Protein interactions — |.r.-‘

Proteins carry out tasks together with other
proteins => Protein — protein interactions

e Proteins bind each other
e Binary interactions
* Multi-protein complexes (assemblies)

3/23/2004



Multi-Protein complex w‘

1. Multi-protein complex: module of functionally

related proteins.
2. Cellular process carried out by multi-protein

complex.
3. Higher order functional units.
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Challenge for Post-Genomic biology: ;\] A
protein interaction

Protein interactions traditionally studied individually
by genetic, biochemical and biophysical techniques.

Current progress:
1. Completion of dozens of genome sequencing
projects
2. New high-throughput experimental methods to
determine functions of newly discovered genes

Systematically analyze interactions / coordinations of proteins on
genomic scale
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Outline:

* Protein—protein interaction and protein complex
* Protein interaction experiments and data
» Unified representation of protein complex data
1. Protein — protein complex network (Bipartite graph)
2. protein — protein network
3. protein complex — protein complex network
 MinMaxCut spectral clustering
* Main computational results: protein cluster & supercomplex
» Biological significance of discovered cluster & supercomplex
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High-throughput methods for detecting protein interactions ‘:\Ll\rj

Recent high-throughput analyses of protein interaction datasets in
S. cerevisiae:
- Two-hybrid dataset by Uetz et al 2000 (the first comprehensive
study in yeast)
- Two-hybrid dataset by Ito et al 2001 (broad coverage in yeast)
- HMS-PCI dataset by Ho et al 2002
- TAP-MS dataset by Gavin et al 2002

TAP-MS dataset is the most reliable one (Deng, et al)
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Protein interaction experiments w‘

« Two-hybrid Assay (fuse proteins)
—Binary interactions
—Capture transient and unstable interactions
e Mass Spectrometry
—TAP-MS: Tandem affinity purification
—HMS-PCI: high throughput protein interaction id.
—Use bait proteins
—Capture multi-protein complexes
 Problems:
—Results do not agree. Lots of noise
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(5 )m « Tandem-Affinity Purification

Aftinity coupled with Mass-Spectrometry
(TAP-MS) determines the
constituents of multi-protein
complexes.

SD5~

Proved to be the most reliable
dataset (Deng, et al)

!
m

Excise bands Gavin AC, et al. Functional organization of the
£ e yeast proteome by systematic analysis of protein
Protein 1 complexes. Nature 2002;415(6868):141-147.

Protein 2 | Analyse by mass
Protein 3 + spectrometry and
Protein 4 | bioinformatics



Two-hybrid
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HMS-PCI

3/23/2004



Protein interaction database m‘

Small overlaps among different experiments.

ITO et al Uetzetal | Gavinetal| Ho et al
Ito et al 4363 186 54 63
Uetz et al 186 1403 54 56
Gavin et al 54 54 3222 198
Ho et al 63 56 198 3596
Small-scale
experiments 442 415 528 391
in DIP

Copied from Salwinski and Eisenberg, 2003
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Protein Interaction databases

Database URL

DIP dip.doe-mbi.ucla.edu

MIPS mips.gsf.de

BIND www.bind.ca

YPD www.proteome.com/YPDhome.html
The GRID biodata.mshri.on.ca/grid/serviet/index

LivDIP dip.doc-mbi.ucla.edu/Idip.html

PREDICTOME predictome.bu.edu

STRING www.bork.embl-heidelberg.de/STRING
interDOM InterDom.lit.org.sg
PreBIND Bind.ca
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Previous attempts to analyze TAP-MS data used simplified models r]}] ||i"|"

Data

Spoke
Model
SNPS

‘7 — Matrix
Model

-find k-cores (Bader and Hogue, 2002)

-find cliques (Spirin and Mirn y, 2003)
-Hypergraph — k-core (Pothen, 2003)
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Previous attempts to analyze TAP-MS data used simplified models r}m ||||'

.I.E'!'

binary interactions with unit weights

Limitations:
* Oversimplify realistic physical interactions between protein;
« Unable to represent diversity of interconnected cellular

Processes.

3/23/2004



Sy

Previous models vs. our models . I'R'\

Previous Models Our Model
Un-weighted interaction strength Weighted interaction strength
- oversimplified -more realistic
Focus only on protein — protein Unified representation
interactions from protein complex data
to derive

protein — protein interactions
complex — complex network

K-core, cligue : :
, Cliq Vigorous clustering
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Bipartite graph model of protein complex data i\] |'ﬁ"
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P-nodes represent proteins and c-nodes represent protein
Complexes

Proteins and multi-protein complexes form the
bipartite graph (p-c interaction network)
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Unified representation of protein complex data,:}.] |.:.-‘

Dual relationship between protein and protein
complex is specified by adjacency matrix B.

Interaction strength of protein — protein network:

3RT) = # of protein complexes H
( i ptontaining both proteins p;,p;

Interaction strength of protein complexe — protein complex network:

. _ [# of proteins shared by
(B'B); = grotein complexes c,,C. [H

3/23/2004



Bipartite graph model of protein complex data m‘

Unified representation

1. Protein-protein (p-p) interaction network arises naturally
Strength of interaction: number of protein complexes containing
the pair of proteins

2. Protein complex — protein complex (c-c) interaction network
also arises.
Strength of interaction: number of common proteins contained

3. System-level understanding of cellular processes
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Cluster interaction networks ﬁ“ﬂ

Previous: k-core, cliqgue => densely connected subgraphs

Our work: clustering --- a more consistent and flexible way
to find clusters in a mathematically rigorous way

Cluster Cohesion to assess cluster connectedness:
Cut a cluster G into subsets: A,B
Cohesion = between-subset connections

weighed by within-subset connections

Large cohesion => highly connected
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Spectral clustering p-p and c-c network w‘

MinMaxCut spectral clustering method:
Minimize similarity between clusters,
Maximize similarity within cluster

s(A,B) N s(A,B)
s(A, A) s(B,B)

where S(AB) = Z ; W,
i A B

Minimizing J,,yc leads to

[ Jwe (A, B) -

= cohesion

q' (D -W)q
q' Dg

min J(g) = min
q q

and the solution is given by

(D-W)q = ADg

Ding, He, Zha, Gu, Simon (2001)
3/23/2004



Biological usefulness of Clusters w‘

Protein Cluster from protein-protein interaction network:

1. Assign annotations (functions) to uncharacterized proteins.
2. Predict possible functions for their orthologs in other species.

3. Predict biologically relevant modules carrying out cellular
functions

Supercomplex from protein complex — protein complex network:

Detect higher order organization of the proteome.
Provide a more system-level picture of protein interactions.
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Main results of protein complex data analysis
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Distribution of degrees in protein-protein interaction network,
a scale-free network.
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Predicted  —--emmmeee- Experimental Protein Complex ---------

sl 28 onp=c 128 Campl=x 123 Compe 156 omplex 158 omplex 151
1 ILT2 35 ML ZAC
ML LT ML LT
ML 3 ML S
g ErE Dy R E- Ly LA LR A LRI
MHLZIAC YHLZIAC
uz "z
U B T A T OB
Rl EL = HPAIS4C
Thel “thel Thel
L | T AL IZBC N | 2BC ML | T
MDA PC DL AR “DLmSC MDA SC
NDLITAC NDLITC
' PN A pt=0 LIL pesty
Tom Tomd
o ke AR
TrlI  EEET | |
a1 mnl a1 -] I
Em3 Em3 Em3
bz Brhz mhz
Bhi 1 L w7 Bhi 1
Enurad AT Enu Enwrd
Bnusd Enusa EnuH Bnu3d
Bnuz3 Bru Bnuz3
Bnull4 T Bru i 13 Bnulld Bnull4
B el Enta3 Bntm B
Rk F By Rk
Brres B Erre?
B | B | B |
B 3 B 3 B 3 B 3
B 2 L B 2 L B 2 B 2
B | B | B | B |
Bk | Emhl Emb | Emb |
Huv Euv
Eul wl
g 1
Adal Al P | Fmal Ml
Akl Arl g q
B P B
| 1 |
» 1 a L L
i Frpaa 3 a1 a1
= = = =
§ - 3 § §
n n n n
m B i m
ai I ai ai
1 1 1
3 - 3
= z
I Prpzi PRz

physiologically intact protein comi)lex



Sy

Predicted clusters of protein-protein network ’_\] |-ﬁ"
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Discovered Protein clusters vs. experimental protein complexes

&
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Matched Protein Complex Size

10k

ad
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&

Overlap between protein clusters
and protein complexes defined as

10 = n(Pk'Cj)/min(l P |’|Cj )

|

20 40 &0 80 100 120
Frotain Clustar Siza

- Discovered protein clusters highly overlap with experiment complexes
- Uncharacterized proteins in discovered clusters might infer novel functions



Implications of discovered protein clusters

on protein interactions: F-statistics

F - statistics of amino acids and physical properties
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across all protein clusters measure statistical significance
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Lys 100 Asn 56 Val 30 le 24
Asp 8 Gin 50 Tyr 29 Ser 23
Arg /3 Cys 39 Met 29 lLeu 22
Pro 70 His 33 Trp 28 Gy 21
Glu 66 Ala 31 Thr 28 Phe 21

pl 169 Basic 149 Acidic 97 MW 60
Aromatic 30 Helix 37 Beta-Sheet 33 Coil 27

1 & o o1 &
F=——3n(f-F)/—S (n,-Yo
K—1; (fi= 1) n_K;(k )
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Implications of discovered protein clusters
on protein interactions: F-statistics

Lys 100 Asn 56 Val 30 e 24
Asp 89 GIn 50 Tyr 29 Ser 23
Arg 73 Cys 39 Met 29 leu 22
Pro 70 His 33 Trp 28 Gy 21
Glu 66 Ala 31 Thr 28 Phe 21

pl 169 Basic 149 Acidic 97 MW 60
Aromatic 30 Helix 37 Beta-Sheet 33 Coil 27

Lys, GIn, Arg, Asn, Asp are most significant: => electrostatic forces
are dominant surface factors influencing protein interactions

Arg is significant: == hydrogen bonding is important
Pro is significant: => hydrophobic interactions has strong stabilizing



Protein complex -
Protein complex

Higher order
organization

Supercomplex:

Cellular Process
Information more
apparent:

Chromatin dynamics,
transcription regulation,
cell cycle control,
biogenesis
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Protein cluster vs. supercomplex
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Most supercomplex

overlap with more than

1 protein cluster.

1 higher order

organization of
biological process

Overlap between protein clusters and supercomplex
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Gene ontology
I Key
biological_process ontology
G495 A single gene,
| annotated to one node on
g%%m each of the three ontologies.
|
ificath All the nodes leading to the gens
Gpmotmam a4 f I INNER MO QUTER.
adaxial/abaxig pattern formation axis specification
G0:000005 I r.lao-_nom?r
abaxialfadaxial axis specification
GO:000003
polarity of the adaxial/abaxial axis
GO000002
v |
INMER NO OUTER gene product
Aucous < ':}ansu'iptlon factor activi
GO:007653
/ GO002118
intracellular LN~ binding
GO01961 GO004533 \
/ nucleic acld binding ity
call GO:007T157 \
G0027473 binding activity
| transcription regulator activity GO.017525
cellular component GOn003885
G0037123 \ ll
| molecular_function ontology
GOWOsTTA
gena ontology /
gene ontology
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Gene Ontology (GO)
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Three separate ontologies:
Biological Process, Molecular
Function, Cellular Component.

Organized as a DAG describing
gene products (proteins and
functional RNA).

Makes the represented biological
relationships computable.

Collaborative effort between major
genome databases.

http://www.geneontology.org



GO Category reeere) ||i?"
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Molecular function describes activities, such as catalytic or binding activities,
at the molecular level (e.g. nucleic acid binding or
exonuclease)

Biological process is accomplished by ordered assemblies of molecular
functions (e.g. ‘signal transduction’ or ‘nuclear export’).

Cellular component is a component of cell that is part of a larger object, which
may be an anatomical structure (e.g. nucleus) or a gene
product group (e.g. spliceosome).
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Biological Significance of Supercomplex C,

MIPS Annotation Category

RNA Pol Il holoenzyme
Kornberg’s mediator
Other transcription
HAT A
TFIID
SAGA
Ada-Spt
TAFlIIs
DNA repair
RSC
ADA
Replication fork
DNA mismatch repair
Cytoplasmic translation initiation

SAGA-like
Nucleotide excision repairosome

RNA Polymerase Il
Replication factor A
Actin-associated motorproteins

MSH2/MSH3
Srb10p
NEF4
elF4A
NuA4
Nuclear pore
Sir

# ORFsin C,, # ORFs matched

35 23
21 21
73 17
15 14
13 13
14 13
14 13
12 12
33 9
10 6
6 6
30 6
5 5
27 4
5 4
16 3
13 3
3 3
7 3
3 3
4 3
2 2
2 2
2 2
24 2
2 2
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Summary .
=

» Study of protein interactions is important part of DOE Genome to
Life program
» Genomic scale data from high-throughput experiments

* A new unified representation captures dual relationship between
protein and protein-complex => naturally lead to protein — protein
and complex — complex interactions

 MinMaxCut spectral clustering provides protein clusters and
supercomplexes

* Protein cluster represents physiologically intact protein complex
« Important implications derived from clusters & supercomplexes

* Gene ontology (component) validates discovered protein clusters
 Gene ontology (process) validates supercomplex
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